Missing Data

A Gentle Introduction

Patrick E. McKnight, Katherine M. McKnight, Souraya Sidani, and Aurelio José Figueredo

HardcoverPaperbacke-bookprint + e-book
Hardcover
March 27, 2007
ISBN 9781593853945
Price: $74.00
251 Pages
Size: 6" x 9"
order
Paperback
March 28, 2007
ISBN 9781593853938
Price: $49.00
251 Pages
Size: 6" x 9"
order
e-book
March 1, 2011
ePub ?
Price: $49.00
251 Pages
order
print + e-book
Paperback + e-Book (ePub) ?
Price: $98.00 $58.80
251 Pages
order
professor copy Request a free digital professor copy on VitalSource ?

Read the Series Editor’s Note by founding editor David A. Kenny
1. A Gentle Introduction to Missing Data

1.1. The Concept of Missing Data

1.2. The Prevalence of Missing Data

1.3. Why Data Might Be Missing

1.4. The Impact of Missing Data

1.5. What's Missing in the Missing Data Literature?

1.6. A Cost-Benefit Approach to Missing Data

1.7. Missing Data—Not Just for Statisticians Anymore

2. Consequences of Missing Data

2.1. Three General Consequences of Missing Data

2.2. Consequences of Missing Data on Construct Validity

2.3. Consequences of Missing Data on Internal Validity

2.4. Consequences on Causal Generalization

2.5. Summary

3. Classifying Missing Data

3.1. "The Silence That Betokens"

3.2. The Current Classification System: Mechanisms of Missing Data

3.3. Expanding the Classification System

3.4. Summary

4. Preventing Missing Data by Design

4.1. Overall Study Design

4.2. Characteristics of the Target Population and the Sample

4.3. Data Collection and Measurement

4.4. Treatment Implementation

4.5. Data Entry Process

4.6. Summary

5. Diagnostic Procedures

5.1. Traditional Diagnostics

5.2. Dummy Coding Missing Data

5.3. Numerical Diagnostic Procedures

5.4. Graphical Diagnostic Procedures

5.5. Summary

6. The Selection of Data Analytic Procedures

6.1. Preliminary Steps

6.2. Decision Making

6.3. Summary

7. Data Deletion Methods for Handling Missing Data

7.1. Data Sets

7.2. Complete Case Method

7.3. Available Case Method

7.4. Available Item Method

7.5. Individual Growth Curve Analysis

7.6. Multisample Analyses

7.7. Summary

8. Data Augmentation Procedures8.1. Model-Based Procedures

8.2. Markov Chain Monte Carlo

8.3. Adjustment Methods

8.4. Summary

9. Single Imputation Procedures

9.1. Constant Replacement Methods

9.2. Random Value Imputation

9.3. Nonrandom Value Imputation: Single Condition

9.4. Nonrandom Value Imputation: Multiple Conditions

9.5. Summary

10. Multiple Imputation

10.1. The MI Process

10.2. Summary

11. Reporting Missing Data and Results

11.1. APA Task Force Recommendations

11.2. Missing Data and Study Stages

11.3. TFSI Recommendations and Missing Data

11.4. Reporting Format

11.5. Summary

12. Epilogue