Regression Analysis and Linear Models
Concepts, Applications, and Implementation
Richard B. Darlington and Andrew F. Hayes
Hardcovere-bookprint + e-book
Hardcover
orderSeptember 27, 2016
ISBN 9781462521135
Price: $95.00661 Pages
Size: 7" x 10"
Request a free digital professor copy on VitalSource ?
See related items for this product
Read the Series Editor's Note by Todd D. Little
“This is a thorough and accessible introduction to regression analysis as conducted and reported in the psychology research literature. In addition to the basics, there is up-to-date coverage of more advanced topics—for example, interaction effects, path analysis, and mediation. Accompanying examples of statistical software code and output enable students to quickly utilize linear models in the analysis of their own data. This is the right textbook for first-year psychology graduate students, and I plan to continue using it.”
—Daniel Ozer, PhD, Department of Psychology, University of California, Riverside
“This fantastic introduction to the general linear model takes the reader from first principles through to widely used techniques such as mediation and path analysis. The clear writing makes it a pleasure to read. Students will find the book an invaluable resource. There are plenty of insights, too, for even seasoned researchers and data analysts. Instructors and students will appreciate the logical structure and chapters that break the material up into manageable chunks.”
—Andy Field, PhD, Professor of Child Psychopathology, University of Sussex, United Kingdom
“If you want to get the most bang for your buck out of your statistical training, investing in learning regression and linear models is the way to go. Nonetheless, many people find linear modeling to be confusing at first. This book breaks down all walls to mastering this fundamental analysis by providing a complete guide in an approachable, conversational style. The book begins with a comprehensive introduction to linear models and continues on to cover the most useful advanced topics, such as logistic regression and mediation and path analysis. A 'must-have' desk reference for entry-level learners and long-time practitioners alike.”
—Elizabeth Page-Gould, PhD, Canada Research Chair in Social Psychophysiology, University of Toronto
“A terrific addition to the regression literature. I am often asked, 'How do I determine which regressor(s) is/are the most important?' The treatment of this topic is excellent, and the authors have done a fantastic job of bringing important issues to light. The applied nature of the text and the interweaving of software syntax and output are major improvements over similar books. I like the fact that the book has software package information for SPSS, SAS, and STATA. It has a nice balance; not too technical on the statistical side, but not simply a 'how to' on the software side. I could see this book being used as the main text in our department's graduate-level regression course.”
—Scott C. Roesch, PhD, Department of Psychology, San Diego State University
“This is a great textbook for students who have only basic knowledge of statistics yet would like to gain a deep conceptual understanding of regression. The book is up to date in current methods in regression, with strong examples using SAS/SPSS/STATA.”
—T. Chris Oshima, PhD, Department of Educational Policy Studies, Georgia State University
—Daniel Ozer, PhD, Department of Psychology, University of California, Riverside
“This fantastic introduction to the general linear model takes the reader from first principles through to widely used techniques such as mediation and path analysis. The clear writing makes it a pleasure to read. Students will find the book an invaluable resource. There are plenty of insights, too, for even seasoned researchers and data analysts. Instructors and students will appreciate the logical structure and chapters that break the material up into manageable chunks.”
—Andy Field, PhD, Professor of Child Psychopathology, University of Sussex, United Kingdom
“If you want to get the most bang for your buck out of your statistical training, investing in learning regression and linear models is the way to go. Nonetheless, many people find linear modeling to be confusing at first. This book breaks down all walls to mastering this fundamental analysis by providing a complete guide in an approachable, conversational style. The book begins with a comprehensive introduction to linear models and continues on to cover the most useful advanced topics, such as logistic regression and mediation and path analysis. A 'must-have' desk reference for entry-level learners and long-time practitioners alike.”
—Elizabeth Page-Gould, PhD, Canada Research Chair in Social Psychophysiology, University of Toronto
“A terrific addition to the regression literature. I am often asked, 'How do I determine which regressor(s) is/are the most important?' The treatment of this topic is excellent, and the authors have done a fantastic job of bringing important issues to light. The applied nature of the text and the interweaving of software syntax and output are major improvements over similar books. I like the fact that the book has software package information for SPSS, SAS, and STATA. It has a nice balance; not too technical on the statistical side, but not simply a 'how to' on the software side. I could see this book being used as the main text in our department's graduate-level regression course.”
—Scott C. Roesch, PhD, Department of Psychology, San Diego State University
“This is a great textbook for students who have only basic knowledge of statistics yet would like to gain a deep conceptual understanding of regression. The book is up to date in current methods in regression, with strong examples using SAS/SPSS/STATA.”
—T. Chris Oshima, PhD, Department of Educational Policy Studies, Georgia State University